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The plant-derived maytansinoids (e.g., maytansijeand their the Aasml19mutant. Acylation, therefore, is not the terminal step
microbial counterparts, the ansamitocins (e.g., ansamitocin P-3 [AP-in the biosynthesis. Of the two methyltransferase geass,/was
3], 2) from Actinosynnema pretiosyfare anticancer agents of  shown to encode the 20-methyltransferase arasm10was shown
remarkable potency, which are of current interest as “warheads” to encode theN-methyltransferase, respectively, based on the
for targeted delivery by tumor-specific antibodfes. detection of10 as the main product in thAasm7and 11 as the
main product in the\asm10mutant. As concerns the two candidate

¢l Me genes to encode the epoxidase, inactivatiomsshllresulted in

O OR H
S0

MeO Me ;: ;acrgﬁz(ﬁ;'h)”(c"'@coc"‘f* the accumulation ofN-demethyl-desepoxyansamitocin P-3),(
g R=V_COCH(CH | whereas theasm30inactivated mutant produced at wild-type
J o Ansamitocin p_33 (22) levels. This identifies Asm11 as the epoxidase, whereas the function
: OHY of Asm30 remains unknown.

Me OMe The least substituted compounds accumulated bashel2and

Their biosynthesis, as revealed by isotopic tracer experithents @SM21lmutants, although not the predominant ones,3amd its
and by cloning and analysis of the ansamitoeisn) gene cluste? 19-chloro derivatived, respectively. This establishes halogenation
involves the assembly of an initial macrocylic polyketide, the and carbamoylation as the first and the second step, respectively,

hypothetical proansamitocirs( Scheme 1). Proansamitocin then N the post-PKS processing reactions2ot ikewise, the predomi-
undergoes a series of post-PKS modifications to introduce a Nant accumulation of1in the Aasm10and of7 in the Aasm11

chlorine, two methyl groups, a cyclic carbamate, an ester side chain,Mutant, respectively, suggest$-methylation as the last and

and an epoxide function, to give. Genes in theasm cluster epoxidation as the penultimate step in the biosynthesis. The order
potentially involved in these transformations have been identified ©f 20-O-methylation and 33-acylation is more difficult to define.
on the basis of sequence homolodies. The sole accumulation @ in the Aasm19mutant suggests that

To resolve whichasmgenes are responsible for particular post- O-methylation precedes acylation. However, the presence of
PKS processing steps, in which order the reactions occur, and tounmethylated8 among the compounds resulting from thgm12
isolate and elucidate the structures of intermediates, we individually inactivation indicates that, at least in the absence of the chlorine,
inactivated each candidate geniinpretiosunATCC 31565. The acylation can also occur prior to methylation. Nevertheless, the

mutated genes with either a large internal delet@sn({7 asm10 predominant pathway appears to proceedemethylation as the
asm1]asm19asm2] or insertion of an apramycin resistance gene third step, followed by acylation as step 4, as shown in Scheme 1.
(asm12 asm3() were introduced intdA. pretiosumand replaced Only a small amount of proansamitocin is detected inetsi®12

the wild-type genes by sequential homologous recombinatibns. Mmutant. Because the structure of this compound was of particular
The mutants were analyzed by ESIMS/MS for the production, or interest, we generated aasm12Aasm21double mutant. As
lack thereof, of2 and of any novel maytansinoids. The most €xpected, this mutant produced ordy The structure elucidation
prominent metabolite accumulated in each mutant was isolated andconfirmed that, as predicted from our earlier restl@;10 of 3
characterized by MS and NMR spectroscopy (see Supporting carries a methoxy and not a hydroxy group, and it revealed that
Information). the double bonds are shifted to thé 1,13 positions, as in the final
The results, summarized in Table 1, demonstrate that many of product, 2.2 Unless there is an unknown post-PKS isomerization
the post-PKS gene products are not highly substrate specific. Thisstep prior to halogenation, for which there is no plausible candidate
is most evident in the mutant resulting from tiem12inactivation, gene, the shift of the double bonds must occur during polyketide
which accumulates a spectrum of deschloro compounds that haveassembly on thasmPKS.
undergone further modifications up to deschloro-AP-3. Every = The compounds accumulated by the various mutants described
subsequent modification reaction can take place in the absence ofcannot be accommodated on a single pathway f8oim 2. Their
the chlorine, albeit less efficiently than in its presence, leading to diversity indicates a considerable degree of promiscuity of many,
the accumulation of all of these compounds in the mutant, although if not most, of the post-PKS modification enzymes. To further
their halogenated analogues, other tHarand its N-demethyl establish whether some of the compounds are dead-end shunt
derivative, have not been detected in the wild-type. Likewise, the metabolites or whether the conversion ®fto 2 represents a
mutant lacking a functional Asm21 accumulates several compoundsmetabolic grid of multiple parallel pathways, we carried out
all without the carbamoyl group, confirming theém?2lencodes a complementation experiments in thAepretiosunmutant HGFO5Z2.
carbamoyltransferase. As reported previolisigm19encodes an This mutant cannot producdue to a large deletion in tresmB
acyltransferase which delivers the acyl group from the correspond- gene, but has a full complement of post-PKS processing genes.
ing acyl-CoA to 30 of, surprisingly, not maytansinol, but its = Restoration of the production o2 by supplementation with
N-demethyl-desepoxy derivativé the compound accumulated by  individual compounds isolated from various mutants revealed which

14236 = J. AM. CHEM. SOC. 2003, 125, 14236—14237 10.1021/ja038166y CCC: $25.00 © 2003 American Chemical Society
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Scheme 1. Post-PKS Processing Steps in the Biosynthesis of Ansamitocin P-3
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Table 1. Candidate Post-PKS Modification Genes in the Ansamitocin-Producing A. pretiosum Strain ATCC 31565
gene aa ansamitocin-related compounds in inactivated mutant main compound established function
asm7 348 200,N-didemethyl-AP-3 10) (MW 606/608) 10 20-O-methyltransferase
20-O-demethyl-AP-3 (MW 620/622)
asm10 294 N-demethyl-AP-3 11) (MW 620/622) 11 N-methyltransferase
asmll 480 N-demethyl-desepoxy-AP-J)( (MW 604/606) 7 4,5-epoxidase
asm12 441 proansamitocir3j (MW 443) 9 19-halogenase
carbamoylproansamitocin (MW 486)
3-0O-isobutyryl-carbamoylproansamitoci@)(MW 5567
19-deschloraN-demethyl-desepoxy-AP-3 (MW 570)
19-deschlordN-demethyl-AP-3 9) (MW 586)
19-deschloro-AP-3 (MW 608)
asml19 378 N-demethyl-desepoxymaytansiné) (MW 534/536) 6 3-O-acyltransferase
asm21 668 19-chloroproansamitocid)((MW 477/479) 4 7-O-carbamoyltransferase
20-O-methyl-19-chloroproansamitocig)(MW 491/493}%
asm30 1005 AP-3 @) (MW 634/636) 2 unknown
aProposed structure (according to the mass spectral data).
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